Microsoft と Google はそれぞれ、分散型ディープラーニング フレームワークをオープンソース化しました。彼らの強みは何ですか?

Microsoft と Google はそれぞれ、分散型ディープラーニング フレームワークをオープンソース化しました。彼らの強みは何ですか?

[[351091]]

Microsoft と Google は、ディープ ニューラル ネットワークをトレーニングするための新しいフレームワークを積極的に研究しており、最近、それぞれの成果である Microsoft の PipeDream と Google の GPipe をオープンソース化しました。

原則として、それらはすべて同様の原則に従ってディープラーニング モデルをトレーニングします。両方のプロジェクトについては、それぞれの研究論文 (PipeDream、GPipe) で詳しく説明されており、この投稿ではその概要を説明します。

まずGitHubオープンソースアドレスを入力してください👇

マイクロソフト:

https://github.com/msr-fiddle/pipedream

グーグル:

https://github.com/tensorflow/lingvo/blob/master/lingvo/core/gpipe.py

ご存知のとおり、実験中、基本モデルのトレーニングは簡単ですが、複雑さはモデルの品質とサイズに応じて直線的に増加します。たとえば、2014 年の ImageNet 視覚認識チャレンジの優勝者は GoogleNet で、400 万のパラメータで 74.8% の TOP1 精度を達成しました。一方、わずか 3 年後の 2017 年の ImageNet チャレンジの優勝者は、1 億 4,580 万のパラメータ (36 倍) を備えた最先端のニューラル ネットワークを使用して 82.7% の TOP1 精度を達成しました。しかし、同じ期間に GPU メモリは約 3 倍しか増加していません。

モデルが拡張されて精度が上がるにつれて、これらのモデルのトレーニングはますます困難になります。以前のサンプルは、より優れたトレーニングを実現するために GPU インフラストラクチャの改善に依存することは持続可能ではないことも示しています。トレーニングを拡張するには、異なるノード間でトレーニング ワークロードを並列化できる分散コンピューティング メソッドが必要です。分散トレーニングの概念は些細なことのように思えますが、実際には非常に複雑です。

Google の GPipe

GPipe は、ディープラーニング プログラムのトレーニング ワークロードのスケーリングに重点を置いています。ディープラーニング モデルで見落とされがちなのが、インフラストラクチャの観点から見たトレーニング プロセスの複雑さです。トレーニング データセットはますます大きくなり、複雑になっています。たとえば、医療分野では、何百万もの高解像度画像を使用してモデルをトレーニングする必要があることは珍しくありません。その結果、トレーニング プロセスは完了するまでに長い時間がかかり、メモリと CPU を大量に消費することになります。

ディープラーニングモデルの分布を考える上で効果的な方法は、データの分布とモデルの分布に分けて考えることです。データ分散アプローチでは、大規模なマシン クラスターを採用し、入力データをそれらの間で分割します。モデル配布は、モデルのトレーニングを高速化するために、GPU や TPU などの特定のハードウェアを備えたアクセラレータにモデルを移動しようとします。

概念的には、ほぼすべてのトレーニング データ セットは特定のロジックに従って分散トレーニングできますが、モデルに関する記述はまったく同じではありません。たとえば、一部のディープラーニング モデルは、独立してトレーニングできる並列ブランチで構成されています。その場合、計算を複数のパーティションに分割し、異なるパーティションを異なるブランチに割り当てるのが一般的な戦略です。しかし、この戦略は、レイヤーを順番に積み重ねるディープラーニング モデルでは不十分です。

GPipe は、パイプラインと呼ばれる技術を活用して、データとモデルを分散的に組み合わせます。概念的には、GPipe は、同期確率的勾配降下法とパイプライン分散をトレーニングに使用する分散型機械学習ライブラリであり、複数の連続したレイヤーで構成される任意の DNN に適用できます。

GPipe はモデルをさまざまなアクセラレータに分割し、トレーニング サンプルのミニバッチをより小さなマイクロバッチに自動的に分割します。このモデルにより、GPipe のアクセラレータを並列実行できるようになり、トレーニング プロセスのスケーラビリティが最大化されます。

次の図は、4 つのアクセラレータに分散された連続したレイヤーを持つニューラル ネットワークの GPipe モデルを示しています。 Fk は、k 番目のパーティションの複合順方向関数です。 Bk は対応するバックプロパゲーション関数です。 Bk は Bk+1 と上位層の Fk の中間活性化に依存します。上位モデルでは、ネットワークの順次的な性質がリソースの活用不足にどのようにつながるかがわかります。次の図は、入力ミニバッチがアクセラレータによって同時に処理できる小さなマクロバッチに分割される GPipe アプローチを示しています。

画像出典:

https://arxiv.org/pdf/1811.06965.pdf

マイクロソフトのパイプドリーム

数か月前、Microsoft Research は、分散型ディープラーニングの簡素化を目的とした一連の研究プロジェクトである Project Fiddle の創設を発表しました。 PipeDreams は、ディープラーニング モデル トレーニングの並列化に重点を置いた Fiddle プロジェクトの最初のリリースの 1 つです。

PipeDream は、パイプライン分散と呼ばれる技術を活用してディープラーニング モデルのトレーニングを拡張するという、他のアプローチとは異なるアプローチを採用しています。このアプローチは、GPipe で使用されるようなデータおよびモデルの並列技術のいくつかの課題に対処しようとします。

通常、データ並列アプローチでは、クラウド インフラストラクチャでのトレーニングや GPU 計算速度が時間の経過とともに増加すると、大規模な通信コストが高くなります。同様に、モデル配布技術はハードウェア リソースの利用効率が低いことが多く、ハードウェアの展開を考慮して特定のモデルをどのように分割するかを決定する際にプログラマーに不必要な負担がかかります。

画像出典:

http://www.microsoft.com/zh-cn/research/uploads/prod/2019/08/fiddle_pipedream_sosp19.pdf

PipeDream は、パイプライン分散と呼ばれる手法を使用して、データ モデルに対する分散アプローチの課題の一部を克服しようとします。

概念的には、パイプライン分散計算では、DNN モデルのレイヤーを複数のステージに分割し、各ステージはモデル内の連続したレイヤーのセットから構成されます。各ステージは個別の GPU にマップされ、そのステージ内のすべてのレイヤーに対して順方向パス (および逆方向パス) を実行します。

PipeDream は、特定のディープ ニューラル ネットワークが与えられると、単一の GPU での実行の簡単なプロファイリングに基づいて、DNN の演算子を分割する方法を自動的に決定し、さまざまなステージ間で計算負荷を分散しながら、ターゲット プラットフォームとの通信を最小限に抑えます。 PipeDream は、モデルの多様性 (計算と通信) とプラットフォームの多様性 (相互接続トポロジと階層化された帯域幅) が存在する場合でも、効率的に負荷分散を行います。 PipeDream のトレーニング分散アプローチの原則には、データ モデル分散アプローチに比べていくつかの利点があります。

まず、PipeDream では、パイプライン実行の各ワーカーが勾配のサブセットと出力アクティベーション情報を他の 1 つのワーカーに通信するだけで済むため、ワーカー ノード間の通信が少なくて済みます。

画像出典:

https://www.microsoft.com/zh-cn/research/uploads/prod/2019/08/fiddle_pipedream_sosp19.pdf

分散トレーニングは、より大規模で正確なディープラーニング モデルを構築する上で重要な課題の 1 つです。分散トレーニング手法は、ディープラーニング コミュニティで活発に研究されている分野であり、効率的な並行プログラミング手法とディープラーニング モデルの性質を統合する必要があります。 Google の GPipe と Microsoft の PipeDream はまだ初期段階ではありますが、それ自体がすでに優れた製品であり、ディープラーニング開発者が利用できる最も革新的な分散トレーニング アプローチの 2 つを表しています。

<<:  Oracle Fusion Enterprise Performance Management Cloudは、計画と予算管理を使用して市場の変化に対応します。

>>:  Huawei Cloud 11.11クラウドカーニバルが開幕、「バイヤーショー」の第一波が戦場に到着

推薦する

リバースホスト - 12 USD/年/4 コア/512 MB RAM/60 GB ハードドライブ/1 TB 帯域幅

Reversehosts は、ブラック フライデーの前に、4 つのコアと 512 MB のメモリを備...

マルチクラウド戦略に関する5つのよくある質問: ワークロードごとの最適化の必要性

イノベーションが継続的に進む今日の世界では、企業は増大するビジネス ニーズを満たすためにさまざまな ...

ゲーム株は全面的に急落し、1日で1457億ドル以上が消失した。

ここ 2 日間、屋上は非常に混雑しています。** が上がるとすぐに、株式投機家がそれに続きます。米中...

エッジの管理: 成功の重要な要素

モノのインターネット、クラウド コンピューティング アプリケーション、リアルタイム サービスと分析の...

K8S のローリングアップグレードを 1 つの記事で理解する

パート01.アップグレード戦略 K8S では、 spect.strategy を使用して、古い Po...

オンラインプロモーションの8つのヒントで、あなたのプロモーションの方向性が定まらなくなります

序文: オンラインプロモーションに携わる者として、私たちは皆、オンラインプロモーションに関して独自の...

A5 Webmaster Network が「2012 年 8 月のインターネット市場取引概要」を発表しました。

最近、admin5ウェブマスターウェブサイトは「2012年8月のインターネット市場取引概要」を独占的...

新規ウェブサイトが30日間の運用で10万元を費やしたにもかかわらず、上位にランクインできなかった理由の分析

月給5,000~50,000のこれらのプロジェクトはあなたの将来です「頭が痛い、頭が痛い…」最近Ti...

ウェブサイトのトラフィック量を決定するために、サイトにはいくつのキーワードを配置しますか?

SEO に携わる人なら、トラフィックがどのように発生するかを知っています。ユーザーがキーワードを検索...

Zcncms ウェブサイト管理システム評価

zcncms とは何ですか? zcncms は PHP で開発された新しい CMS です。今日は、将...

Zadig + Dongtai IAST: 継続的デリバリーへのセキュリティの統合

IAST は現在注目されているセキュリティテスト技術です。 Zadig のランタイム環境管理機能を使...

Alibaba Cloud Native 実践サミット: デジタル経済時代のクラウドネイティブ

著者: ユン・チャオ【51CTO.comオリジナル記事】導入昨年はクラウド ネイティブが爆発的に増加...

moecloud: サンノゼ cn2 gia vps、新年20%オフ、月額47元、512Mメモリ/1コア/10g SSD/450gトラフィック/200M帯域幅

中国の商人であるMoecloudは、2008年にVPS事業を開始しました。現在は、米国西海岸サンノゼ...